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High-frequency fluctuations of temperature and of longitudinal and vertical velocity 
components have been measured with high-resolution probes in order to test the 
local-isotropy assumption. The simultaneous measurements of u’, w‘, 8’ and the 
measurements in two space points with various separations in either the longitudinal 
or transverse directions were made in the large boundary layer (Rh = 616) of the 
I.M.S.T. Air-Sea Interaction Simulation Tunnel. There is consistent evidence that 
the local-isotropy assumption is satisfied by the velocity field a t  all scales smaller than 
twenty times the Kolmogorov microscale (q  z 027 x low3 m), i.e. in the dissipative 
range of scales but not in the expected inertial subrange. The direct comparisons of 
the lateral and longitudinal temperature autocorrelation and structure functions 
show that the temperature field does not verify the isotropy assumption a t  all scales 
greater thanor equal to 37 and presumably a t  even smaller scales. This is confirmed by 
the study of the temperature-increment skewness and flatness factors. The spectral 
distribution -of the non-zero derivative skewness (X(@ = +0-9) shows that it is 
essentially contributed by those scales for which the dynamic field satisfies isotropy. 

1. Introduction 
Local isotropy was introduced by Kolmogorov (1941) as homogeneity plus isotropy 

of the small scales of turbulent motions, and it remained an implicit assumption in 
his 1962 refinements. It is a cornerstone of the theory of universal self-similarity, 
closely connected with the assumption of complete independence of the small-scale 
structure of the turbulent field from its large-scale structure and mean shears, and 
also with the random character of the energy cascade. Obukhov (1946) and Corrsin 
(1952) have extended the assumption to  the small scales of scalar fields mixed by 
turbulence, apparently as a consequence of their properties as passive contaminants. 

It is a generally received opinion that these hypotheses are true and are verified 
over a large range of scales in most turbulent flows. There are a t  least four reasons 
for this opinion. Firstly, the hypotheses seem necessary for the self-similarity theory 
to  hold - and this theory seem too coherent and efficient to  be wrong. Secondly, local 
isotropy brings such great simplifications in equations, and also in the experimental 
estimation of some operators like the dissipation rates of kinetic energy and of scalar 
variances that could perhaps not be estimated otherwise. Thirdly, in numerous 
fluid-mechanics problems isotropy has been proved to be a very efficient first 
approximation. And, last but not least, there seems to be little experimental evidence 
against the hypotheses. 

Indeed, many an experimentalist since Townsend (1948) has verified some of the 
relations describing some of the consequences of local isotropy. Conversely, if 
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experimental evidence against local isotropy appears, then the assumption seems so 
plausible that instrumental errors and/or shortcomings are usually invoked. 

It seems that no complete and accurate experiment has yet been devoted 
exclusively to investigating the limits of the hypotheses for the dynamic field and 
for scalar fields in a flow where they have a good chance of being verified. The I.M.S.T. 
large tunnel has already been proved to be well adapted to obtaining new results in 
that area (Mestayer et al. 1976; Coantic et al. 1981). An extensive programme of 
measurements of high-frequency fluctuations of velocity components and temperature 
has been carried through in recent years, principally to check the validity of these 
hypotheses. 

This paper recalls first the relations deriving from local isotropy that can be 
experimentally verified. It reviews a large number of experimental results and the 
conclusions that can be honestly drawn about the velocity field and the scalar fields. 
Then it presents measurements of high-frequency fluctuations of u’, w’ and O’, in one 
space point or in two space points with various separations, obtained with high- 
resolution hot-wire and cold-wire probes. The methods employed to process the data 
are presented. A large number of consequences of local isotropy have been tested with 
the velocity-component spectral functions, structure functions, autocorrelation 
functions and microscales. For the temperature field we compared the transverse, 
longitudinal and time-dependent autocorrelation coefficient and structure functions 
and the corresponding ‘Taylor microscales ’. We estimated the spectral distribution 
of the non-zero derivative skewness factor. We also computed the skewness and 
flatness factors of the temperature increments. Consequences directly related to local 
isotropy are discussed. Some other consequecces have been omitted for lack of space: 
they will be discussed in another paper. 

2. Theoretical relations 
Local isotropy implies that  the properties of symmetry of the isotropic fields 

(Taylor 1935) are satisfied by those operators that  are only functions of small scales. 
The odd moments of all gradients of temperature %/axi and of the transverse 

gradients of the velocity components aui/axj ( i  + j )  should be identically zero. Their 
even moments should obey relations of the form 

with i $; j and no summation on i a n d j ,  and 

whcre u, u and w are respectively the x ,  y and z velocity components in the 
longitudinal and transverse directions (by analogy with geophysical flows, we use 
in boundary layers the direction z for the ascending vertical); I9 is temperature; the 
bar indicates a time average, assumed in all this work to be equal to an ensemble 
average. 

As a direct consequence, the longitudinal Taylor microscale A, and the lateral 
Taylor microscales A, and A,, defined by 
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should satisfy the relations 
A, = 4 2  A, = 4 2  A,. (5) 

Similarly, the temperature longitudinal A,, and lateral A,,, A,, 'Taylor microscales ' 

should satisfy the relations 
A,, = A,, = A&. (7)  

As another direct consequence, the average rate of dissipation of kinetic energy, 
defined by 

where v is the kinematic viscosity and with summations on i a n d j ,  and the average 
rate of destruction of the temperature variance p, defined by 

where 9, is the molecular diffusivity of temperature, can be estimated from the value 
of one of the gradients : 

J 
Also, local isotropy implies that  the structure functions of temperature of 

order p ,  

have equal values for small separations in any of the three directions, if p is even, 
and are equal to  zero if p is odd: 

D,p(AE) = (x + At-) - 0 ( X ) P  (6 = 2, y, 4 ,  (11)  

Din(Ax) =DZn(Ay)= D$"(Az) (AX = Ay = Az), (12) 

(13) 

The 'transverse ' structure functions of the velocity components, for small separ- 

D$""(Ax) = Di"+l(Ay) = Di"+l(Az) = 0. 

ations, should obey relations of the type: 

Dkn(Ay) = DL"(Ax) [Ax = Ay), 114) 

(15) D","+'(Ax) = D2,"+'(Ay) = Dkn+l(Ax) = 0. 

Similar relations can be derived for the values of the autocorrelation functions, 
defined by 

for small separations, e.g. 
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cross-stream and longitudinal velocity components for the high wavenumbers k ,  : 
From (18) one can derive an isotropic relation between the spectra of the 

with JOm Ei ( k , )  dk ,  =q, where u; is the fluctuating part of the velocity component 

ui (ui = iii + u;). From (19) i t  follows that, if E l ( k , )  obeys a power law k r ,  the transverse 
spectra obey the same power law with a constant ratio E 3 ( k l ) / E l  ( k , )  = i(1 -n). This 
ratio is equal to 4 in the case of the -5  law in Kolmogorov’s (1941) inertial subrange. 

In  an isotropic flow the stress cospectrum El,  3 ( k l ) ,  defined by 

is identically zero. So, local isotropy can also be tested by estimating the ‘ correlation- 
coefficient spectrum ’ or ‘ normalized-stress cospectrum ’ 

which should roll off a t  high wavenumbers. 

3. Experimental evidence for the velocity field 
3.1. Dissipative range 

According to  Monin & Yaglom (1975), Townsend (1948) verified first the relations 
(1) in a macroscopically anisotropic turbulence, the wake behind a circular cylinder 
and, with a lesser degree of agreement, in a turbulent boundary layer over a flat plate 
(Townsend 1951). 

Champagne, Harris & Corrsin (1970) estimated, in a nearly homogeneous tunnel 
flow, the lateral Taylor microscales from the spatial correlation coefficient functions 

of the transverse velocity components, with the help of the isotropic relation 

They compared these estimates with the longitudinal Taylor microscales A, obtained 
with the help of (4). They found that (1) and ( 5 )  were quite well verified, although 
(2) was clearly not. Champagne (1978) also reports a good verification of (1) in the 
wake of a cylinder. 

The relation between the velocity-component spectra (19) was well verified in the 
dissipative range of scales by Gibson (1962,1963) in a jet, Uberoi & Freymuth (1969, 
1970) in cylinder and sphere wakes, and by Champagne (1978) in his nearly 
homogeneous flow and in a cylinder wake. 

It is nevertheless interesting to note Uberoi’s (1957) results on gradients and 
vorticity in a homogeneous flow and a boundary-layer shear flow. I n  the latter, he 
did not find any evidence of local isotropy, and the discrepancy between his results 
and ( 1 )  seemed to increase with the rate of deformation of the fluid. 

Champagne (1978) also measured gradients and high-frequency spectra in an 
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axisymmetric - free jet with a relatively high turbulence Reynolds number, 
R, = ( ~ ’ ” 4  h,/v x 626. The gradients disagreed with ( 1 )  and the spectra with (19), 
a t  all scales. Yet we must note that, in this jet, the turbulence intensity was very 
high ((u’2):lU z 030),  so that Taylor’s ‘frozen-field’ approximation was not valid. 
Champagne corrected his moments and spectra on the basis of Lumley’s (1965) 
first-order model. But the corrections were so large that doubts remain on the validity 
of the corrected results, particularly since there has never been any experimental 
verification of Lumley’s approximation. 

The behaviour of the ‘ normalized-stress cospectrum ’ (20) has been observed by 
Corrsin (1949) and Tani & Kobayashi (1952) in jets, Laufer (1951) in a channel flow, 
Klebanoff (1953) in a boundary layer over a flat plate, and others. All results are 
similar to those of Champagne et al. (1970) in the homogeneous flow : after values of 
large amplitudes (of the order of 0.4) a t  low wavenumbers, R,, 3(kl) falls abruptly 
to  negligible values at intermediate wavenumbers and in the dissipation range. Yet 
this behaviour does not seem to be a stringent test of local isotropy, as the range of 
k, where Rl ,3 (k l )  x 0 seems to  extend to wavenumbers where other criteria of 
isotropy cannot be verified. 

As a provisional conclusion, it appears that numerous results indicate that local 
isotropy seems verified in the dissipative range. There are only few results conflicting 
with the hypothesis ; but, also, few experiments verified several of the consequence& 
of the hypothesis. 

3.2. Inertial subrange 

A very large number of authors have reported measurements of approximate power 
laws in supposed inertial subranges, spectra proportional to  k;% or second-order 
structure functions proportional to Ax!. It has been said many times that these results 
prove the validity of the local isotropy hypothesis. Yet Champagne et al. (1970) had 
already observed that their spectra followed k y f  laws although other criteria 
excluded the existence in their flow (R, z 130) of a range of scales intermediate 
between the production and the dissipation ranges where isotropic properties may be 
observed. They concluded that ‘the Kolmogorov - # law, even with proper component 
spectral magnitudes, is a relatively insensitive indication of local isotropy ’. In  fact, 
i t  is perhaps not even that. 

Mestayer et al. (1976) pointed out that the spectra obtained in the atmosphere by 
several authors did exhibit large -Q ranges without agreeing with (19) in these ranges. 
Champagne (1978) noted that a large number of laboratory spectra present the -8 
law shape far into ranges where other criteria (Corrsin 1958; Bradshaw 1969) clearly 
indicate that the flow cannot be isotropic. This point was actually mentioned by 
Monin & Yaglom (1975) : they showed that the one-dimensional lateral-spectrum 
five-thirds law ‘extends considerably further into the region of small wavenumbers 
than the subrange [of k,] for which the five-thirds law is valid for the three-dimensional 
spectrum ’, and that the longitudinal-spectrum five-thirds law extends even further. 
So, even in the large-Reynolds-number geophysical flows, the extent of local isotropy 
should rather be deduced from the estimation of the ratio of the vertical- or 
transverse-velocity-component spectrum to the streamwise-velocity spectrum than 
from the width of the range of the approximate five-thirds law. 

Schmitt, Friehe & Gibson ( 1 9 7 8 ~ )  made a review of experimental estimates of the 
ratio E,(N)/E,(N) obtained over land and sea ( N  is frequency). It appears that, as 
a general rule, the isotropic value of the ratio, $, is not attained. The only 
exceptions are the measurements made with a bivanecup anemometer by Garratt 
(1972) and with sonic anemometers by Kaimal et al. (1972), Leavitt (1975), 
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Champagne et al. (1977). But, although the sonic anemometers have proved many 
times to be most valuable for measurements in the atmosphere, i t  seems to us that  
they are not to be trusted with regard to the # ratio. 

The first point to consider is that, in all cases where the ratio was reported, this 
value was attained by E,(N) /E, (N)  only for the highest frequencies that the sonic 
anemometers can measure, i.e at best the lowest frequencies of the inertial subrange. 
Interesting examples are given by the 1968 Kansas Experiment results. Kaimal et 
al. (1972) reported the results of the measurements with the sonic anemometers for 
various conditions of stability, the parameter z /L  varying from -2 to + 1 .  I n  
unstable conditions the curves of E, (N) /E , (N)  attained values close to # since 
f = Nz/  r x 2 ; in moderately stable conditions they seemed to tend towards #, but 
did not attain it at the highest frequency displayed, fi x 10. During the Kansas 
Experiment, Larsen & Busch (1974, 1976) obtained high-frequency turbulent fluct- 
uations by means of hot and cold wires mounted on a fast-responding vane placed 
a t  the 5 7  m level close to the Air Force Cambridge Research Laboratories instrum- 
entation. It appears in the detailed analysis of Busch (1973) that  the measurements 
of E,(N) /E, (N)  with the X-wire anemometers attained %, on average and with 
a dispersion of 15 %, only for reduced frequencies f larger than 20; i.e. far into the 
-Q range of the spectra of w and u and for frequencies much greater than those the 
sonic anemometers can measure. Busch supposed these differences to be due either 
to the fact that Kaimal et at. (1972) included spectra from greater heights or to  the 
‘arbitrary judgement involved’. We think that i t  could be due to a fault in the 
sonic-anemometer response. 

We did not find in the literature direct comparisons of the frequency responses of 
sonic anemometers and of high-frequency probes as hot films or wires. McBean & 
Elliott ( 1978) measured simultaneously the static pressure and the velocity compo- 
nents with hot-wire and sonic anemometers. The cospectra of i?p/ & and uH (hot-wire) 
on the one hand, and us (sonic) on the other hand, clearly indicate an attenuation 
in the sonic response above at least the reduced frequency f = 0.1. 

The author of the present paper was involved in two programmes where sonic and 
hot-film/wire anemometers were operated simultaneously. I n  both cases the 
anemometers were calibrated independently. 

The experimental details of the participation of the University of California San 
Diego turbulence group to  the GARP program AMTEX I1 have been described by 
Mestayer et al. (1978). The instruments were a three-way E. G. & G. Model 198 sonic 
anemometer and a 25 pm hot-film constant-resistance anemometer. The computation 
of the spectral coherency of the two output signals (after all due corrections) 
indicates a loss of coherency above 0.5-1 Hz; but this could be due to the distance 
between the two probes. Figure 1 compares the two spectra of the longitudinal 
velocity component multipled by N2,  where the frequency N is in hertz 
( N z / u  = 092N). With a path length p of 20 cm, the sonic anemometer was expected 
to measure frequencies up to r/2np = 9 Hz at least. On figure 1 one can observe a t  
low frequencies the attenuation of the hot-film signal due to  the lateral-component 
sensitivity of this probe. Note that the coherency is nevertheless very close to  1 in 
this range of frequencies. But on the high-frequency side the sonic clearly attenuates 
above 1-2 Hz. 

I n  the ME. MO .MI .  I1 experiment (Mestayer et al. 1980) the two-way E.  G. & G. 
sonic anemometer of the group from the Observatoire du Pic du Midi was set a t  a 
distance of 1 m from the I.M.S.T. four-wire probe (Mestayer & Chambaud 1979). 
Although the sonic measured up to  30 Hz its effective cutoff frequency u/2np was 
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FIGURE 1.  Spectrum of u‘ measured with a 3-way sonic anemometer and a 
hot-film anemometer (AMTEX experiment). 

3-5 Hz, owing to the low mean velocity ( N z / U  = 1.9N). The comparison of the two 
spectra of u (figure 2 )  shows behaviour closely similar to those of the AMTEX 
experiment. The sonic anemometer appears to attenuate above 1-2 Hz. Finally, 
figure 3 compares the ratio E,(N) /E, (N)  obtained with the two anemometers. It is 
clear that, in the range 01-10 Hz, the ratios differ, although the u-spectra (figure 2 ) ,  
and also the w-spectra, are hardly discernible. Where the sonic data oscillate around 
+, the ratio obtained with the wire probe is around 1.1.  These results, along with those 
of McBean & Elliott (1978) and Busch (1973), cast serious doubts on the validity of 
the Q ratios obtained with sonic anemometers. This attenuation could be due to wakes 
of the transducers along the acoustic path (Wyngaard 1981). 

Nearly all measurements with X-wire anemometers yielded values of E J E ,  lower 
than Q in the inertial subrange (Dunckel et al. 1974; Dreyer 1974; Revault D’Allonnes 
1978; Schmitt et al. 1 9 7 8 ~ ) .  Only Revault d’Allonnes and Schmitt et al. reported 
individual curves of E,(N) /E, (N)  versus N .  They show behaviour closely similar to 
our curve of figure 3: oscillations around 1.1 in the inertial subrange and an increase 
over + for the frequencies at the boundary between the inertial and dissipative ranges, 
as predicted by Wyngaard (1968). This seems to prove that local isotropy is verified 
only by the smallest scales, in the dissipative range, and that the -; law is not closely 
related to isotropy. 

4. Scalar-field experimental data 
4.1. Inertio-convective subrange 

There are few data available relating to the local isotropy assumption for the passive 
scalar contaminants in high-Reynolds-number turbulent flows. 

Numerous authors have reported spectra of temperature, humidity, refractive 
index, and even particle or salt concentrations, measured in the atmosphere or large 
laboratory flows, that presented in the ‘ inertio-convective range ’ an approximate -! 
power law. There is no reason to expect that the - 3  law of scalar spectra is more 
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FIGURE 2. Spectrum of u’ measured with a 2-way sonic anemometer and 
hot-wire anemometers (MEMOMI experiment). 
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FIGURE 3 .  Evolution of E, (N) /E , (N) ,  measured with sonic and hot-wire 
anemometers (MEMOMI experiment). 
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closely related to the local isotropy of scalar fields than that of the velocity component 
spectra to the local isotropy of the turbulent dynamic field. However, in Obukhov’s 
(1946) law expressed by 

Ee( k,)  = 8-i k,-g 

the constant P o  should be universal. But there is such a large dispersion in the 
experimental estimates of P O ,  from 0.35 (Gibson & Schwarz 1963) to 1-17 (Gibson, 
Stegen & Williams 1970) that universality does not seem to hold. Note that these 
values of &, are related to the definition of given by (9) ;  some experimenters, 
defining as the dissipation rate of ip, introduce constants twice as large. Note 
also that experimenters using (23) to estimate generally choose be between 0 4  and 
0 5 ,  but there is no experimental evidence for a unique value of P O .  

On the contrary, without even considering the measurements made over the sea 
that may have been contaminated by salt spray (Schmitt, Friehe & Gibson 1978b), the 
fine spectra obtained with miniature platinum resistance thermometers (Champagne 
et al. 1977; Williams & Paulson 1978; Antonia et al. 1979; Mestayer et al. 1980) appear 
to  present a behaviour slightly but clearly different from the k;f law. This difference 
is more neatly seen when the spectra are displayed multiplied by k;g in a log-linear 
plot: they present an ‘inertio-convective subrange’, which is not flat, indicating a 
spectral decrease less steep than k?. Williams & Paulson (1978) gave two hypotheses 
to explain this apparent ‘bump ’ in the compensated spectrum (i.e. the spectrum 
multiplied by k i ) :  (i) the dissimilarities in the budget equations for the turbulent 
kinetic energy and temperature variance and in particular the role of pressure; and 
(ii) the beginning of a Batchelor’s (1959) ‘viscous-diffusive subrange’ in k;’, due 
to  spatial dissimilarities in the fluctuations of the dissipations of kinetic energy and 
temperature variance (see the numerical simulations of Hill ( 1978) and Larcheveque 
et al. (1980)). This last hypothesis, implying a low correlation between the internal 
intermittencies of the dynamic and scalar fields, seems to contradict Obukhov’s (1946) 
assumption that the scalar field local isotropy can be naturally deduced from the local 
isotropy of the dynamic field (but we must note that this contradiction does not imply 
by itself the local anisotropy of temperature). 

Also, temperature structure functions of time DBp(A7) = {O(t + AT) - O(t)}p were 
measured by Park (1976), Mestayer (1975), Antonia & Van Atta (1978) to estimate 
the longitudinal structure functions by assuming Taylor’s hypothesis consequence 
D f ( A x )  - DBp(A7). The scatter of the results did not allow them to deduce much more 
from the even-order functions than from the spectra in the inertio-convective 
subrange. More significant is the clear departure of all odd-order functions from zero, 
which seems inconsistent with the isotropic relation (13), at least in this range of 
scales. 

4.2. Dissipative range 

As can be seen in the above relations (3)-(17), most direct verifications of the local 
isotropy assumption for scalar fields necessitate measurements a t  several points in 
space, which explains why there are so few available data. Freymuth & Uberoi (1971) 
verified relation (3) approximately in a heated wake, but found a value of -0.6 for 
the skewness of the temperature derivative 

which should be zero, as are all odd-order moments of aB/ax,  for an isotropic 
scalar field. A number of other authors measured S ( d )  = d3/(d2)! in various high- 
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FIGURE 4. Time series of 6 and d3 (I.M.S.T. heated boundary layer). 

Reynolds-number flows where local isotropy was expected (see references in Sreeni- 
vasan & Tavoularis 1980). Most of them, assuming Taylor's hypothesis consequence 
S(6) = -S ,  obtained also values of S of the order of unity. As the temperature 
derivative is known to be representative of only high wavenumbers, these results 
were considered to be in contradiction with the isotropy of small scales. 

Mestayer et al. (1976) and Gibson, Friehe & McConnell(l977), after having proved 
that these non-zero values are not due to errors in temperature measurements with 
cold wires, showed that the sign of S is related to that of the mean temperature 
gradient. This observation led to  the assumption that the small-scale anisotropy is 
connected to the large-scale structure of the flow : in particular, the sign of S and that 
of d$/d.z change simultaneously with the direction of the large-scale ramps or 
sawtooth features that can be observed in the temperature signal and which seem 
to be characteristic of the sheared turbulent scalar fields (Gibson et al. 1977). 

I n  a number of works (see references in Sreenivasan, Antonia & Britz 1979) the 
effects of the ramps and the characteristics of the superimposed small-scale fluctuations 
have been computed with a simplified sawtooth model (Antonia & Van Atta 1978, 
1979) or measured in a heated jet with a signal-conditioning method (Sreenivasan 
et al. 1979). These studies tend to  demonstrate that  the experimental data that 
indicate the temperature anisotropy, i.e. non-zero odd-order time-dependent struc- 
ture functions (Antonia & Van Atta 1978) and non-zero derivative skewnesses 
(Sreenivasan et al. 1979), are due mainly to the large-scale ramps, the sharp abrupt 
fronts of which contribute to  some high-frequency characteristics, and that the 
superimposed small-scale fluctuations are nearly isotropic. I n  particular, in the heated 
axisymmetric jet of Sreenivasan et al. (1979) the superimposed signal is obtained by 
subtracting, in ramps of a definite length, the ensemble average of the ramps from the 
temperature signal. This new signal has a derivative skewness equal to only 0-33, 
instead of 0.87 for the original signal. 

These studies assume that the superimposed small-scale fluctuations are uncor- 
related with the ramps, that  the fronts of these are always sharp and extremely thin, 
and that the ramps are present everywhere in the signal, quasi-regular and contiguous. 
Figure 4 presents simultaneous time traces of 8 and 4 3  = (d8 /d t )3  obtained in the 
heated boundary layer of the IMST tunnel ( d U / d z  = 4 s-l; 8 / d z  FZ + 5 "C/m). It 
is obvious that the sharp fronts of the ramps provide positive contributions to d3 (here 
S( d O / d x )  = -S(O) = -0.63). But i t  is also clear that  the ramps are very irregular, 
not as sawtooth-like as in the heated-jet signal of Sreenivasan et al. (1979), not 
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contiguous but altogether overlapping and/or disjointed, with large periods of 
fluctuating signal belonging to no ramp (this is not taken into account in the analysis 
of Sreenivasan et al.). This figure also shows that the use of a very small probe of 
length equal to 7 allows the observation of a structure of front regions more complex 
than was suspected previously. Nevertheless, it  could be of interest to adapt 
conditional measurements to flows with no external intermittency , such as heated 
homogeneous shear flows or boundary layers a t  z / 6  < 04. 

Sreenivasan & Tavoularis (1980) have shown that the existence of a non-zero 
skewness and its sign are connected to the presence of both velocity and temperature 
mean gradients. Yet i t  is still not clear why the values of S keep the same magnitude 
when the Reynolds number of the flow increases, i.e. when the relative frequency of 
ramp fronts decreases; this could be an indication that the ramps then become a more 
general feature of the signal, overlapping and superposing a t  large and smaller scales, 
‘maintaining ’ down to small scales the anisotropy of the macroscopic flow (Wyngaard 
1976; Freymuth 1981). 

Temperature spatial gradients have been measured by Sreenivasan, Antonia & 
Danh (1977) in a small laboratory heated boundary layer and by Antonia et al. (1979) 
in the atmospheric surface layer, providing data for direct tests of the local isotropy 
assumption (by direct we mean that in those tests there is no need for Taylor’s 
hypothesis to be verified). As interpreted by Van Atta (1977) the derivative spectra 
obtained in the laboratory (Rh w 150) indicate a rather good agreement with the 
hypothesis of local isotropy, in the dissipative range, in the streamwise and 
transverse direction, along with a clear disagreement in the vertical direction. The 
atmospheric data are not clearly conclusive, apparently because of the errors due to 
the so-called gradient probes (Mestayer & Chambaud 1979) and to the use of Taylor’s 
hypothesis to estimate &/ax. 

5. Technical arrangements and signal processing 
The measurements described in this paper were made in the I.M.S.T. Air-Sea 

Interaction Tunnel (Coantic et al. 1969), in the heated air flow over the water surface. 
The boundary layer, developed over 34 m, has a thickness 6 of 0.75 m in the 
measurement section and is 3 m wide. The mean wind speed, U, = 8.9 m/s, the mean 
temperature 8, outside the boundary layer, and the surface temperature 8, 
(8, -8, x + 10.7 “C)  were controlled with accuracies of 0.01 m/s and 0 1  O C  and 
measured during all the experiments with a miniature Pitot tube connected to a 
precision M.K.S. Baratron electrical manometer and with thin thermocouples. The 
probes were located in the median plane of the test section a t  an  elevation z = 0.25 m 
over the water surface. The experimental conditions and the values of the various 
parameters characterizing the turbulent field are presented in table 1. 

Two sets of measurements were made. First, a DISA 55 P 11 X-wire probe made 
of two 1-25 mm long slanted tungsten wires (5 pm in diameter) separated by 1.25 mm 
was combined with a 1-25 mm long straight wire and a 0.3 mm long Wollaston cold 
wire with a diameter of 0635 pm, in a 2.5 mm wide multiwire probe to measure 
simultaneously u’, zd and 8’ (Mestayer 1980). In  the second set of measurements, two 
identical cold wires measured 8’ simultaneously at  two points in space separated by 
a distance varying between 1 mm and 20 ern either in the longitudinal direction x 
parallel to g, or in the transverse horizontal direction y. Measurements of u’ have 
also been made with two hot wires separated in the transverse direction. The probe 
separations were known to an accuracy of 5 pm. 
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= 033 = 7 5  m s-l 8 = 238 O C  8, = 15.0 “C 
6 

E = 0.635 m2 s - ~  7 = 027 x m A = 0.013 m R,, = 616 

Table 1 .  Experimental conditions 

The technical set-up of the probes and design of the probe holders were fully 
described by d s t a y e r  & Chambaud (1979), along with the calibration techniques, 
the choices of the operating parameters and the performance of the apparatus. The 
cold wires were operated in DISA 55 M 20 constant-current 1 : 20 bridges and the hot 
wires in matched DISA 55 M 10 constant-resistance bridges. The cold-wire operating 
current was set to 0 6  mA when operated in the multiwire probe, which resulted in 
a time constant smaller than 15 ,us and asensitivity ratior, = (ae/au)/(ae/aO) z 0.036, 
taken into account in the data-reduction procedure described below. For the 
measurements with the isolated cold wires, i.e. the measurements a t  two space points, 
the current was 0.2 mA and the effect of the small velocity sensitivity ( rs z 8 x 
has been shown to be negligible in the range of separations which we are interested 
in. Figure 5 shows a preliminary t,est of this effect : the temperature autocorrelation 
coefficient function ROO(Ar) = t?’(t + A r )  8’ (t)/p has been computed for five successive 
measurements with various currents I .  The effect of the sensitivity to velocity 
fluctuations, which increases with the current, is seen to be non-negligible for the large 
time lags but extremely small for the small time lags (upper curves) ; actually i t  is 
even smaller for I = 0.2 mA. 

All spectra presented here were obtained from the multiwire-probe measurements. 
The four wires had been calibrated for velocity amplitude, velocity direction and 
temperature. The signals from the four wires were simultaneously low-pass filtered, 
sampled and digitized. The sets of four digital data were processed together (using, 
for the hot wires, response laws derived from the results of Champagne, Sleicher & 
Wehrmann (1967)) to separate the time series proportional to u’, w’ and O’, corrected 
for any parasitic contamination (Mestayer 1982). 

Figure 6 presents the further stages of data processing. The dots (a )  are the spectral 
estimates obtained with a fast-Fourier-transform routine from three successive 
recordings sampled a t  the rates of 10000, 2500 and 312.5 samples/s (large arrows) 
and previously low-pass filtered with 21 db/oetave analog filters a t  the frequencies 
indicated by the small arrows, t o  avoid the aliasing effect. Actually, the estimates 
of the higher-frequency band, where the slope of the spectrum is steep and rapidly 
changing, were obtained from the second-derivative spectrum (i.e. the signal was 
digitally differentiated twice before the fast-Fourier-transform computation and the 
estimates of Eazslotz(N) were then divided by (27rN)4 to obtain the dots of the ( a )  curve. 
This ‘ pre-whitening ’ greatly improves the spectral estimation by reducing the 
‘leakage ’. On the left of the ( a )  curve is indicated the value of the 99 yo confidence 
interval, which is identical for all estimates, as the three recordings consisted of the 
same number of samples (292 times 1024). At the high-frequency end of the ( a )  curve 
one can see small peaks a t  frequencies that are exact multiples of 50 Hz, which are 
due to unavoidable noise, electromagnetic waves picked up by the hot and cold wires 
themselves. In the ‘cleaned’ curve (b )  they have been removed along with the 
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FIGURE 5 .  Autocorrelation-coefficient functions measured with various cold-wire currents 
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FIGURE 6. Stages in the process of obtaining the spectral curves. 
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estimates belonging to the ‘roll-offs ’ due to  the low-pass filterings at frequencies close 
to  0.8 times the Nyquist frequencies. The ( b )  estimates were then logarithmically 
‘cleared’ by polynomial interpolations, (c). The curves that are presented here were 
then obtained by fitting eleventh-order Tchebycheff polynomials to the logarithms 
of these last estimates. On figure 6, the curve is compared in ( d )  with the ‘cleared’ 
estimates, and, in ( e ) ,  with the ‘cleaned’ estimates, restricted to  the range of 
frequencies effectively measured. 

A last correction has been applied to  the spectra of velocity components to  take 
into account the high-frequency attenuation due to the spatial resolution of the hot 
wires. They had a length 4 5  times greater than Kolmogorov microscale. Their 
highest-frequency measurements can be interpreted as measurements of an integral 
of the field along their length. Wyngaard (1968) made a semi-theoretical study of this 
effect, based on the ‘Pao’s (1965) spectrum’ model of the dissipative range. From 
Wyngaard’s results, we computed the expected ratios of the measured q5m to true q5 
spectra (figure 7). Those were used to  correct our high-wavenumber spectra. It is 
worth noting that, although the probes are used all together in a ‘multiwire probe’, 
their spatial resolutions to measure the smallest scales remain those of the individual 
probes, because of the high value of the sensitivity ratio ( a e /  8u)/( 8e/ 80) for the hot 
wires ( x  -80), and its small value for the cold wires ( w -0036) (Mestayer 1982). 
Although there are serious doubts about the validity of Taylor’s hypothesis, the wave- 
number functions were deduced from the frequency functions using the straight- 
forward relation k, = 27rN/ v, as Lumley’s (1965) and Wyngaard & Clifford’s 
(1977) studies indicated that the errors should be small, with (u’”)i/ 0 x 0.09 : smaller 
than 5 yo for the u-spectrum and 3 yo for the w-spectrum, a t  the highest wavenumbers. 

To obtain the spatial correlation and structure functions, the measurements a t  two 
points have been reduced with a mixed analogdigital procedure. The signals were 
not digitized on-line but recorded on a Schlumberger M P  5522 f.m. analog tape 
recorder at 76 cm/s with a 51 db signal-to-noise ratio after analog filtering a t  5000 Hz 
to remove noise. When played back, on each record the two signals were so amplified 
as to take into account the variations of the probe sensitivities and analog filtered: 
low-pass a t  4400 Hz (Kolmogorov frequency NK = 4420 Hz) and high-pass a t  0.01 Hz 
to  remove the small but cumbersome temperature trends of the tunnel thermal 
regulation. The data were sampled at a rate of 625 samples/s during 12 minutes, then 
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digitally recalibrated and centred around their means. The products and moments 
of the differences were computed and averaged by direct cumulative averaging to 
avoid all effects of digital filtering and rounding-up. Figure 8 shows that the record 
duration was always greater than the time necessary to obtain the final value f 5 yo 
of the moments ((AO)p) = 0: of the increments AO(Az) = O(x+Az)-O(z). 

The measurements with two probes with a separation normal to  the mean wind 
direction do not raise major problems, if the moving-probe displacement is accurate 
(Mestayer & Chambaud 1979) and if the distance between the probes remains large 
enough to  avoid the effects of the thermal and dynamic wakes: the minimal 
admissible distance between two hot wires seems to be about 1 mm, and between two 
small cold wires, about 0.1 mm. But when the separation is in the mean-flow direction 
the problem increases considerably. The thermal and dynamic wakes of the hot wires 
are highly fluctuating and they survive for long distances : the longitudinal velocity 
functions have been found not to be directly measurable between 1 mm and 20 cm. 
As for the temperature measurements, Mestayer & Chambaud (1979) described the 
setting up of small wires allowing measurement of the longitudinal functions : the 
values of 8,8'2 and E,(N) measured a t  the various separations showed no discernible 
wake effect. Tests have also been made to examine the dynamic wake effects: one 
of the wires was replaced by a velocity wire either downstream or upstream of the 
other temperature wire. There is no discernible systematic trend in the mean-velocity 
value (figure 9) or in the value of for distances greater than 0.3 mm. Observation 
of the u' spectra show no deformation at any distance; except perhaps isolated 
over-contributions of only a few per cent located at frequencies that could be the first 
harmonics of the Strouhal frequencies of the wire and the prongs (Mestayer 1980) : 
their effects on the temperature field are negligible. 

6. Results for the dynamic field 
Various criteria have been proposed to  predict the existence of local isotropy and 

that of an inertial subrange. They are based on Kolmogorov's (1941, 1962) assump- 
tions that this subrange exists when the wavenumber ranges of turbulent kinetic 
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energy production and dissipation are separated. Corrsin (1958) proposed numeri- 
cal relations between timescales representative of smaller and larger scales, 
y/uK = ( v / E ) ~  < Idu/dzl-l; or between the wave numbers representative of the 
dissipative range k ,  ( -  Olk, )  and of the production range k ,  - (U12)-?\dc/az\, 
k ,  + k,. In  the present experiment these criteria can be considered as largely met: 

Actually, figure 10 (a )  shows that the production and dissipation spectra are neatly 
disjointed, but not separated by a large range where they would be altogether 
negligible, although the ratio of the wavenumbers of the peaks of the two spectra is 
200, even larger than o - l k ,  kG1. 

Local isotropy could thus be expected, not only in the dissipative range but also 
in an intermediate 'inertial' subrange, say for k l y  > lo-'. 

Figure 10 ( b ) ,  where the spectra, normalized with Kolmogorov variables 

q5i(pkl) = (vkr)-' Ei(k l )  = 6 - f  d E g ( k l )  (i = 1,3), (26) 

are multiplied by ( y k l ) i  to emphasize their behaviour in the intermediate range of 
wavenumbers, proves that this is not the case. The consequences of the spectral 
behaviours observed here will be studied and compared with previous results in a 
paper in preparation. We can note here that the spectra. do not present exact -Q 
power laws that would appear here as plateaus, the values of which would be equal 
to Kolmogorov's 'universal constants' ul, a3 and Po. Anyhow, i t  is clear that  the 
transverse spectrum computed from the measured longitudinal spectrum q51 with help 
of the isotropic relation (19) (dashed line) is not equal to the measured spectrum q53 
for wavenumbers klq smaller than 5 x lop2, i.e. in the expected inertial subrange. 
Nevertheless i t  is interesting to note the small plateau of c $ ~  in the range 
2 x proportional to (yk,)-% in a region 
of wavenumbers where isotropy is not satisfied and where the production of turbulent 

< r/kl < lop2. It indicates a decrease of 
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FIGURE 10. (a) Spectral contributions to the rates of turbulent kinetic energy production and 
dissipation. (b )  ‘Inertial ’ subrange spectra, in Kolmogorov scales: dotted and plain lines are the 
measured spectra; the dashed line is the transverse spectrum computed from $I with help of the 
isotropic relation (19). 
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FIGURE 11. Second moments of spectra in Kolmogorov scales, as in figure 10 (b) .  
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FIGURE 13. Correlation-coefficient spectrum and spectral coherency of the velocity components. 

kinetic energy is not negligible (figure lOa), although one cannot consider i t  as an 
extension to smaller wavenumbers of any inertial subrange -8 law (see 53.2). For the 
higher wavenumbers up to klv = 1 and over, figures 11 and 12 present the second 
and fourth moments of the measured spectra and of the computed 
transverse spectrum. They show that the relation (19) is satisfied with a very good 
approximation in the dissipative range. 

The correlation-coefficient spectrum defined by (20) is displayed in figure 13 (a ) .  The 
value of the correlation between u' and w' is high a t  low wavenumbers and falls to 

and 
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FIGURE 14. Even- and odd-order transverse structure functions of u' 

the isotropic value zero for wavenumbers k , ~  larger than 3 x 
spectral coherency, or cross-spectrum modulus, defined by 

at most. The 

[cohu/,w! (k) l  = [E?, 3(ki) + Qu?, 3 (k1)l [Ei(ki) E3(ki)I-'3 (28) 

where Qu,, (k,) is the quadspectrum of u' and w', is null in an isotropic field. Figure 
13 ( b )  shows that i t  presents a high and nearly constant value a t  low wavenumbers and 
a relatively fast decrease to zero above klr = This indicates that  zero coherency 
is a relatively weak test of local isotropy. 

in figure 14, 
result from the simultaneous measurements with two identical hot wires separated 
in the horizontal direction normal to the mean wind speed by distances varying from 
1 mm to 20 cm. The even-order functions present expected behaviours: regular 
increases with Ay/q and power laws in the intermediate range of separations (which 
will be discussed elsewhere). By comparison, the odd-order functions appear to  have 
rather chaotic behaviours, the main feature of which seems to  be the fast roll-off for 
distances Ay/ r  smaller than 10 (the vertical arrows under the lower left corner of 
figure 14(b) indicate that the functions change sign for the corresponding values of 

The transverse strycture functions of u', presented normalized by 

A Y h ) .  

Dg(A7) N Dg(Ax),  (29) 
By assuming that 

the time-dependent structure functions of w' can also be regarded as estimates of 
the transverse functions, as w is in a direction normal to Ax. The even-order 
functions Dg(A7) of figure 15 have the same general regular behaviour as the 
transverse functions DE(Ay) of figure 14 (a) ,  except for the smallest separations, for 
which the X-wire-probe resolution is insufficient, and for the largest separations, 
because the vertical fluctuations can hardly contribute to scales larger than the 
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boundary-layer thickness S (S/q x 2.8 x lo3). The odd-order functions Og(A7) (figure 
16) present very different behaviours, with two changes of sign around 
A7U/9 = 5 x lo2 and for A7U/9 = 30. For smaller separations these functions remain 
very close to zero, the isotropic value. 

From the measurements with two hot wires we also obtained the transverse 
autocorrelation coefficient function of u'. A plot of the derivative of RU+(Ay)  with 
respect to Ay (figure 17, left and upper scales) allows us, by means of (22) ,  to estimate 
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the transverse Taylor microscale: A, w 1.5 x m. Similarly the derivative of the 
time autocorrelation function Ru,,(A7) (right and lower scales in figure 17) lets us 
estimate the longitudinal Taylor microscale A,, with the help of Taylor's hypothesis 
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FIGURE 19. Longitudinal and transverse temperature structure functions of odd orders. 

that is A, x 2.13 x lo-' m. The ratio A,/A, has the value 1-42, verifying well the 
isotropic relation ( 5 ) .  

These data provide an important set of converging evidence that the local-isotropy 
assumption is verified in the dissipative range of scales smaller than 207 : the ratio 
of the microscales deduced from the curvatures at the origin of the longitudinal and 
transverse autocorrelation functions of u', the falling to zero of the odd-order 
transverse structure functions Dg(Ay) and Dg(A7) for small separations, the falling 
to zero of the correlation-coefficient spectrum and the spectral coherency of u' and 
w', and verification of the isotropic relation (19) by the longitudinal and vertical 
spectra for high wavenumbers. Although the zones where the spectral coherency 
coh,,,, (hl) and, to a lesser degree, the correlation-coefficient spectrum and the 
structure functions of w' are equal to zero extend to larger scales, the assumption 
does not seem to be verified for scales larger than 207 ( h , ~  < 5 x lop2), conspicuously 
so for the scales a t  which a Kolmogorov inertial subrange could be expected. 

It is worth noting that these results have been verified in other sets of measurements 
done in the tunnel, in particular when the mean temperature gradient was inverted. 

7. Results for the temperature field 
The most critical test of the assumption of local isotropy of the temperature field 

we have been able to realize is the direct comparison of the longitudinal and 
transverse structure functions and autocorrelation functions. Indeed, the two sets of 
measurements have been realized with the same probes, same sensitivities and 
precisions, and no additional assumption. 

Isotropy implies the equality of the even-order temperature structure functions in 
all directions (equation (12)). The results of figure 18, where the symbols are the values 
of the longitudinal functions and the lines are the curves fitted to the measurements 
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of the transverse functions, show that the two sets of functions are not equal in any 
range of separations. If one could suppose that the second-order functions converge 
for the smallest separations, the observation of the fourth- and higher-order functions 
proves that this is certainly not the case. Figure 19 presents the two sets of functions 
of odd orders. They are clearly not equal a t  any separation, their ratios varying 
between 3 and 10, and over. Their shapes also differ greatly, the transverse functions 
presenting rather chaotic behaviour and the longitudinal functions a very regular one. 
They also differ markedly for the smallest separations: one may consider that  the 
transverse functions should be falling to zero for Ay/q < 3 but the longitudinal 
functions have smooth shapes that clearly present no roll-off. 

The autocorrelation coefficient functions of longitudinal and transverse separations 
are not equal a t  any scale (figure 20) but their normalizations make them converge 
towards 1 for the smallest separations. From their limit curvatures we can estimate 
the temperature ‘Taylor microscales ’ : 

The plots of the derivatives with respect to separation of the time-and space-dependent 
functions (figure 21) show that we can get a good estimate of AOu x 1.90 x m; 
a less accurate estimate of A,,, 

(32) 

and only an upper limit on AOt which indicates clearly that A,, is smaller than 
1.7 x m. The value of A,, obtained from the integral of the &spectrum by means 
of (6) is 1.12 x lop2 m, in agreement with (32). So the estimated microscales A,, and 
hey are clearly not equal, indicating that the isotropy assumption will not be verified, 
even a t  the smallest scales. 

An interesting characteristic of the sheared inhomogeneous temperature fields is 
the non-zero derivative normalized third-moment or skewness factor S defined by 
(24). We present in figures 22-25 some data that illustrate the importance of this 
factor. To study its spectral behaviour we played back an analog record of 
temperature previously low-pass filtered a t  the Kolmogorov frequency NK, differen- 
tiated the signal and squared the derivative in analog circuits before a new low-pass 
filtering a t  2NK to take into account the contributions to frequencies higher than NK 
possibly created by this pre-processing. The signals 6 and @, sampled a t  a rate of 
4NK, were used to compute, with the complex Fourier transform routine, the skewness 
cospectrum (Wyngaard 1976) defined by 

1-08 x lop2 m < hex < 1.36 x 10+ m; 

Actually, all the following results have been verified to  be nearly identical when the 
computation is made with the temperature signal low-pass filtured at N K ,  sampled 

Figure 22 presents the skewness cospectrum normalized by b2. It appears to have 
a relatively high and constant value of the order of 1.3 over a large range of normalized 
wavenumbers, < y k ,  < 4 x lo-*, and to roll down to zero on both sides of this 
range. The correlation-coeflicient spectrum of 6 and b2 (figure 23) has the same general 
shape, but stays non-negligible a t  lower wavenumbers. Yet in the large intermediate 
range it has small values, no more than 0.4, and about 0.2 in the range lop2 < y k ,  < 
6 x lop3. We must note that the rather abrupt roll-off of these two curves a t  y k ,  = 1 

at  2NK and digitally differentiated and squared. - 
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FIGURE 21. Derivatives of the longitudinal, transverse and time-dependent temperature 
autocorrelation functions. 

is not necessarily a true feature of the field but can be due both to the probe resolution 
( I  z 7)  and to  the low-pass filtering a t  N,;  so we have no proof that these curves 
could not extend to even higher wavenumbers. Figure 24 displays the skewness 
cospectrum multiplied by y k ,  and normalized by &variance, which indicates the 
contribution of each wavenumber to  the skewness, as 
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FIGURE 25. Skewness and flatness factors of temperature increments. 

with S(e)  x 0.9. This plot shows that 95% of the skewness of 6 is contributed by 
wavenumbers belonging to  the range 5 x lop2 < $cl < 1 ,  i.e. those for which the 
dynamic field has been proved to  verify the local isotropy assumption. 

The velocity increment Au = u(x+At)-u(x) is often considered as a velocity 
representative of structures of size A< or as a velocity spatiallyfiltered a t  the size and 
in the direction of A<. We can also consider the temperature increment A0 as a 
spatially filtered temperature. The third-order structure functions normalized by the 
second-order structure functions thus appear to  be the skewness factors of the 
temperatures A 0  spatially filtered in the direction A t ,  

and the normalized fourth-order structure functions appear to be theirJlatness factors. 
It is obvious that isotropy implies that the flatness factors of the temperature 
increments in the three directions be equal and that the skewness factors be zero. 
The evolutions of these skewness and flatness factors for longitudinal, transverse and 
time separations are presented in figure 25. Although there are noticeable differences 
between the longitudinal and time-dependent structure functions themselves (differ- 
ences that will be shown and discussed elsewhere) it is worth noting the excellent 
agreement between the skewness and flatness factors for Axlh and AriT/q (to be clear 
the space-dependent skewnesses are negative and the time-dependent ones positive). 
For large time lags the temperature increment behaves as a Gaussian variable (8 + 0, 
F z 3) and for the smallest time lags it seems to behave asymptotically as 8 .  The 
flatness factors for the longitudinal and transverse directions behave in almost 
parallel ways, but they are not equal and their differences seem to increase for the 
smaller separations. As for the skewnesses, they are not equal and they depart 
significantly from zero : the transverse skewness has a behaviour rather erratic (but 
less erratic than Dj?j(Ay)) and could fall to negligible values for Ay/q < 3;  in contrast 
the skewness of the longitudinal temperature increment keeps about the same value 
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of -0.7 for all separations smaller than AXIT x 4 x lo2, indicating a constancy of 
anisotropy . 

8. Conclusions 
This set of data obtained in a relatively high-Reynolds-number heated boundary 

layer with high-resolution probes and sophisticated data processing techniques 
allows us to draw several conclusions about the local isotropy assumption. 

The spectra of u’ and w‘, their correlation-coefficient spectrum, their spectral 
coherency, the transverse structure functions of u’ and the time-dependent structure 
functions of w’, the corrcpponding autocorrelations and the estimates of the transverse 
and longitudinal Taylor microscales, present consistent evidence that the assumption 
is satisfied in the dissipative range of scales smaller or equal to 20.31 (yk, > 5 x lop2). 
The assumption does not seem to be satisfied in the ‘inertial’ subrange, where it was 
expected from the genera1 criteria Moreover, the spectra q53 
and is proportional to 
k$ in the subrange 2 x lop3 < qk, < lop2 where the spectrum of turbulent kinetic- 
energy production is non-negligible and where isotropy is not satisfied. This result 
confirms the conclusions that we drew from a review of data obtained in high- 
Reynolds-number flows : isotropy is usually not observed in the ‘ inertial subrange ’ 
and does not seem to be closely connected with the approximately -$ power laws 
of spectra. 

Direct comparisons of the longitudinal and transverse temperature autocorrelation 
and structure functions indicate that the local-isotropy assumption is not satisfied 
by temperature even for scales as small as 3.31. This is also confirmed by the various 
estimates of the longitudinal and transverse Taylor temperature microscales. The 
spectral distribution of the derivative skewness (&d) x 0.9) differs significantly from 
zero over a wide range of scales, lop3 < qk, < 4 x lo-,, and falls to zero only at  
wavenumbers close to yk, = 1 corresponding to the probe resolution and frequency 
filtering. 95% of the contributions to x(6) are due to wavenumbers for which the 
velocity field agrees with the isotropy assumption. The evolution of the skewness and 
flatness factors of the temperature increments in the transverse and longitudinal 
directions confirm the non-agreement with the assumption. The constant value of the 
skewness of the increment in the longitudinal direction for all separations smaller than 
A X / T  = 4 x lo2 seems to indicate that the large-scale anisotropy of the field is 
conserved through the cascade down to very small scales. 

< qk, < 5 x 
do not follow exact -$ power laws in this range, but 
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